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NEAR-OPTIMUM DETECTION PERFORMANCE OF POWER-LAW
PROCESSORS FOR RANDOM SIGNALS OF UNKNOWN LOCATIONS,
STRUCTURE, EXTENT, AND ARBITRARY STRENGTHS

INTRODUCTION

This technical report is the fifth in a series of NUWC
Division Newport publications which are aimed at determining the
fundamental performance capability of detection of random signals
with unknown characteristics. The previous four reports dealt
mainly with the case of equal average signal power levels in all
the occupied bins; this report extends those investigations by
addressing the important case of arbitrary (unequal) signal
powers in the occupied bins. The major question to be answered
is, Whether the same power-law processor values of the power v
should be used in order to reach performance levels in the
neighborhood of those for the optimum processor? Also, the exact
losses of the power-law class of processors, for various numbers
of occupied bins and different sets of signal strengths, are of
interest. The principal motive is the need to detect
intermittent signals that occur in random locations with no
apparent structure and with arbitrary strengths, time intervals,
and/or frequency extents.

As shown in [1l; pages 23 - 30], it is necessary to introduce
an unrealistic optimum processor in order to determine a limiting
bound on performance. However, to keep this bound as tight as

possible, it is also necessary to find the worst possible

(unrealistic) optimum processor. The simple banding procedure

employed in [1] no longer suffices now, when the variation in the
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set of signal powers is large. Instead, a pairing procedure
within bands of different sizes must be employed; the numerical
computational procedure accompanying this method necessitates
careful manipulation of the processing equations in order to
preserve significance and avoid overflow. As a result, very
tight bounds have been obtained, which indicate that the power-
law processor, with proper choice of power v, can virtually
optimally detect unequal signals, with strengths just a fraction
of a decibel greater than those required for the optimum
processor.

The novel method presented here for the development of the
power-law class of processors employs a top-down design, in that
the optimum (unrealistic) processor is first derived, and then
modified as little as possible, in an attempt to keep the signal
detectability near optimum and yet realize a practical realistic
processor in this environment. This is to be contrasted with the
usual bottom-up design, namely, the maximum likelihood approach,
in which nothing is presumed known about the signal parameters or
characteristics, and estimates of the pertinent parameters are
extracted from the available data set of measurements. The
resultant (in-bred) generalized likelihood ratio processor has
already been found to perform poorer than the power-law processor
by several decibels in this unstructured environment [1,2,3,4].
The improvement offered by the top-down design, at least for the
particular signal detection problem considered here, suggests

this idea as a candidate approach to be considered for other

situations as well.
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PROBLEM DEFINITION

The search space consists of N (frequency) bins, each
containing independent identically distributed noises of unit
power under hypothesis Hy, signal absent. This situation is
presumed to be accomplished by an earlier normalization
procedure. The number N is under our control and is always a
known quantity. When signal is absent, the probability density
function of each of the N bin output noises is completely known.

When signal is present, hypothesis Hy, the quantity M is the
actual number of bins occupied by the signal; this is frequently
an unknown parameter. The quantity L is the actual set of bins
occupied by signal components, when a signal is present; for
example, if M = 4, then we might have L = {2,3,7,29} for the
occupied set, meaning that bins 2,3,7,and 29 have signal in them.
This quantity L is always unknown in our investigation. Finally,
the quantity Sq is the actual average signal power in the m-th
occupied bin in set L, when a signal is present; the average
signal powers, {§m} for 1 < m < M, are unknown in practice.

Nothing is presumed known about the received signal, such as
it being deterministic; rather, the signal is taken to be random
with no known structure. Thus, for example, we do not presume
the signal to be a collection of harmonics of unknown fundamental
frequency, nor do we insist that the signal occupy a contiguous
band of frequencies of unknown bandwidth and/or center frequency.
Instead, the signal is allowed to occupy M bins of the search

band of N bins in an unspecified (nonoverlapping) random manner.




TR 11123
PROBABILITY DENSITY FUNCTIONS OF INDIVIDUAL BIN OUTPUTS

We now specify the detailed character of the probability
density functions of the available data, namely, q, and q,, under
hypotheses H and Hy respectively. In both hypotheses, the bin
outputs or observations {xn} are taken as the squared envelopes
of the outputs of (disjoint) narrowband filters subject to a
Gaussian random process excitation; alternatively, the
observations can be interpreted as the magnitude-squared outputs
of a fast Fourier transform subject to a Gaussian process input.
It is assumed that these magnitude-squared bin outputs, that is,
random variables {x,}, are statistically independent of each
other, which is consistent with the frequency-disjoint
requirement and a Gaussian process excitation.

Since the bin output noise has been normalized at unit mean
level, the probability density function of the n-th observation

X, is, under hypothesis Hy,, an exponential of the form

qo(un) = exp(-un) for u, > 0, 1<n<N. (1)

On the other hand, when signal is present, hypothesis Hy,
the density of output x , for this bin occupied by the m-th
signal with average signal power S, is changed to

D S
q;(uy) = 7573

-u
exp[i—:gg—] for u > 0, negL. (2)
=m =m

Observe that the actual signal power per bin, Sy, can also be
interpreted as the actual signal-to-noise power ratio per bin,

since the noise power per bin has been normalized at unity.
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OUTLINE OF APPROACH

Solution of the signal detection problem posed here has been
achieved by a five-pronged approach. First, we take an
unrealistic position and determine the optimum processor for
known extent M and signal powers {S; }. Then, due to the
impossibility of realizing this particular optimum processor,
approximations are developed that lead to the class of power-law
processors, which are realistic and are not dependent on any
information unlikely to be available in practice, such as M and
{§m}. Having arrived at the power-law class of processors, the
level of their detection capability is addressed next and
accurately quantified in terms of their false alarm and detection
probabilities, Pe and Pyr respectively. This naturally leads to
the question of the loss that accompanies this approximation and
the absolute best level of performance that can be attained by
any processor in this environment; solution of this very
important problem requires creation and derivation of a new
bounding procedure involving banding of signals and pairing of
signals. Finally, a quantitative comparison of the receiver
operating characteristics of the power-law processor with those
for the absolute best processor is made; this allows for
determination of the maximum losses that are incurred by

employing this practical power-law device for signal detection.

5/6
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DERIVATION OF OPTIMUM PROCESSOR FOR RANDOM SIGNALS WITH KNOWN

EXTENT AND STRENGTHS BUT UNKNOWN STRUCTURE AND LOCATIONS

We presume that the number of bins occupied by signal, M, and
the (arbitrary) average signal powers, {§m} for 1 < m < M, are
known to the (unrealistic) optimum processor, but that the actual
locations of the occupied bins, L, are completely unknown, random
and equally likely to occur. There is therefore a total number of

possible occupancy patterns, for the M occupied signal bins, of

K, =N (N-1) -« (N+ 1 -M), (3)

0

each of which possibilities can occur with equal probability
l/KO. For future reference, we define the strength parameters

{gm} and weights {ym} according to

1
a, = Ti 5 =—"— forl<m¢<M. (4)

! ¥m 1+
Under hypothesis Hy, the joint probability dénsity function

governing the statistically independent members of observation

{x,} (that is, the magnitude-squared fast Fourier transform

outputs) is given by

N
Po(Uqseeesuy) = I:I{exp(—un)} for all u_ > 0 . (5)

On the other hand, under hypothesis Hy, the pertinent joint

probability density function governing observation {x,} is
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[v]z

[v]z

s [
oo e —g exp[—g u.] X
=T %=1 %=T Ko 1 173

no two equal

pl(ull"’luN) =

N
X a, exp[— a, uk} coo éﬂ exp[— gﬂ ux] I:I{exp(—un)}] ; (6)

the "no two equal" qualifier under the summations means that none
of the integers j,k,...,X can be equal to each other, while the
slash on the product indicates that we must have n # J,k,ee0 R
There are M summations in (6), with a total of K, terms.

The likelihood ratio for observation {xn] is therefore

_ pl(xl,...,xN) 1

LR = = a, a., *°** a, X
po(xl,...,xN) K0 =1 =2 =M
EiD RIS
X s exp[y X. +w, X, + ¢ + W, X ] . (7)
j=1 k=1 %=1 173 2 7k M R
no two equal

The likelihood ratio test follows immediately as

N N N N
> cee exp(ﬂ X: +w, X, + cc + W, X ] v (8)
=1 %=1 x=1 173~ 727k MR <
no two equal

where v is a fixed threshold. There is a total of K, terms in
these M summations; for large N, this number in (3) is too large
to make optimum processor (8) a viable processor. Expression

(8) must be simplified in order to realize a practical processor.
Also, M and {§m} are required to be known in order to realize
(8); these drawbacks obviate the use of (8) as a practical

alternative for detection purposes.
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SPECIAL CASES

As a very special case of (8), consider N = 2, M = 2; then

(8) reduces to

exp(y1 X, + W, xz) + exp(y_1 x, + W, xl) z v . (9)

Despite having M = N for this example, the optimum processor does
not simply sum the data values x; and X,, nor does it linearly
weight and sum them (unless w; = w,, that is, 8, = 8,). Rather,
weights W, and w, are applied to each of the two possibilities
where the two different signals could have been located, each
weighted sum is exponentiated, and the results are summed. This
immediate deviation from linear processing, even for M = N, leads
us to anticipate that the class of power-law processors will have
even wider applicability in the case of unequal signal powers
{§m} than in the case of equal signal powers studied in [4]. For
example, v = 1 may no longer be the best power to use when M = N.
Another special case is afforded by setting M = 1 in (8);

there follows the likelihood ratio test

]

2 exp(w,; xj) i v . (10)
j=1

This is the same form as encountered earlier in [4; (9)] for
equal signal powers, because for M = 1 there is only one signal
power of relevance. Numerical detectability results for M = 1
are available in [4; figures A-1, B-1, C-1 for v = 2, 3, 2.5,

respectively]. Accordingly, we limit consideration to M 2 2 here.
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For N = 3, M = 2, the likelihood ratio test in (8) becomes

exp(w; X, + W, x2) + exp(y1 x; + W, x3) + exp(y_1 x, + W, xl) +
>
exp(w; X, + W, x,5) + exp(w; X3 + W, xy) + exp(w; X3 + W, X,) ¢ V-
(11)

for which

=
"
w

The final special case we consider is N = 3,

the likelihood ratio test is

exp(y_1 X, + W, X, + Wa x3) + exp(y_1 X4 + W, Xg + Wiy xz) +
+ exp(y_1 X, + Wy, X, + Wq x3) + exp(y1 X, + W, Xg + Wy xl) +

>
+ exp(w; X5 + Wy, X + wq x,) + exp(w, X3 + W, X, + W,y xl) <V .

(12)

The major point to observe in these special cases is that all
possible combinations of weights {w_} with data values {x } are
utilized prior to exponentiation and summing. When the correct
pairing of weights and data values is encountered under H,, the
exponential greatly accents that term, tending to lead to the
correct decision on signal presence.

When M = N, there is a total of K, = N! terms in the N
summations in (8). The extremely large size of N! precludes
realization of the optimum processor in this case. This is in
marked distinction to the case of equal signal powers, where

(8) simplifies, due to the equal weights, to the easily realized

likelihood ratio test

(13)

[1=
M

=

AV
<

10
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GAUSSIAN INPUTS

The above derivation used observations {xn}, which were the
result of a magnitude-squared operation on the complex outputs of
a fast Fourier transform or were the envelope-squared outputs of
a bank of narrowband filters subject to a Gaussian input
excitation. This resulted in the exponential probability density
functions employed in (5) and (6).

The question arises as to how the optimum processing would
differ if the in-phase and quadrature components (gn,hn) that led
to data value x  were retained instead; that is, x, = gﬁ + hﬁ.
Here, the in-phase and quadrature components g and hn will both
be zero-mean Gaussian random variables with a common standard
deviation (oo = 1/V2 for Hy, 07 > 0 for Hl)' as well as being
uncorrelated with each other. This means that there is no
information relative to signal presence contained in the phase of
z, =49, + i hn’ but, instead, the information resides only in the
magnitude of the complex random quantity Z . This means that
there is no loss in generality or processing capability by
immediately reverting to the magnitude-squared operation

2
| L]

n That is, the optimum data processing for the Gaussian

x, = | z

situation is identical to that derived above, starting with the
magnitude-squared variables {xn}. (This conclusion has also been

verified by direct manipulation of the Gaussian statistics of the

in-phase and quadrature variables (gn,hn); only the combination

2

gﬁ + hn occurs in the probability density functions and

likelihood ratio.)

11/12
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POWER SERIES EXPANSION OF THE OPTIMUM PROCESSOR

The optimum processor for unknown signal structure and
occupied bin locations is given by (8). This form is impractical
for numerical calculations when N is large; accordingly, we
attempt to manipulate (8) into a useful numerical form. For

M = 1, this likelihood ratio test reduces to

exp(w; X ) , V . (14)

[v]z

n=1

which can be easily realized and simulated. Therefore, we
confine the following analysis to M 2 2.

If we denote the argument of the exponential in (8) by

>
1

W, xj + W, X + e + yﬂ Xg (15)

its power series expansion yields the likelihood ratio test in

the form
N N N
Y el y [1 + X + % x? + % x> + ...] Z v, (16)
j=1 k=1 x=1
no two equal

where there are M summations. The constant 1 leads to a
summation value of K,. We now consider and simplify the next

three terms in this expansion.

13
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LINEAR COMPONENT OF OPTIMUM PROCESSOR

The linear term in expansion (16) is, using (15),

NS sl TR wall AN A S

j=1 k=1 x=1
no two equal

Since random variable Q1 is linear in both the weights {gm} and

the data {xn}, and since the M-fold sum treats every variable

equally, it can be simplified to the exact result

Q) =K W T,

where

=
i

(N-1)(N-2)---(N+1-M)

and

[=

M
Wy =2 _vp e Ty R
m=1 n=

X_ .
n
1

Compact result (18) is very simple and quick to execute and

(18)

(19)

(20)

evaluate numerically. Notice that the simple linear sum T, of

all the data values {xn} is the relevant data statistic to first

order.

14
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QUADRATIC COMPONENT OF OPTIMUM PROCESSOR

The quadratic term in expansion (16) is

N N N 2
% = j;1 le =) [El Xjruy Rttt T uy xx] ) (21)
no two equal

But, since Q, is quadratic in the data {xn}, we must have exactly
_ 2
Q, =A, T, + B, T] , (22)

2 72 2 71

where we define

M
v — k

X, . W =) _wo. (23)
=1 n k =1 —m

H
<

n
[=

It should be observed that only N of the quantities {Tv} for
v =1,2,3,... are independent and that only M of the guantities

{wk} for k =1,2,3,... are independent. For example, we have

n
N

1 2
T, =2 T [3 T, - T1] for N (24)

and
W, = 2w [3 W, - w2] for M = 2 (25)
2 W 2~ M M :

In general, in order to solve for coefficients A2 and BZ’ we

first set all data values x, = 1, obtaining for (21) and (22)

Wi N(N-1)--+(N+1-M) = A, N + B, N? . (26)

On the other hand, setting data value X = 1, and all other

x, = 0, there follows for (21) and (22)

15
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W, (N-1)(N-2)-+-(N+1-M) = A, + B, . (27)

The solutions to (26) and (27) are

= 2 _ 2
AZ = K2 [N W2 - W1] P B2 = K2 [Wl - WZ] ’ (28)

where we have defined

Ky = (N-2)(N-3)--(N+1-M) for N2 M 2 3 ; (29)

also, K, =1 for N 2 M = 2. Since the data {x } is never
2
1

negative, we always have W, > Wou except when only one weight

is nonzero. Also,

2

M
S :yh] SMW, SNW,, (30)

W =
m=1

with equality holding only when all the weights are equal and
when M = N. Thus, A, and B, in (28) and (22) are nonnegative.
Numerical investigation of A2 and B2, for different values of
M and weight structures {ym}, reveals that both terms T2 and Ti
in (22) are influential in determining the value of Q, when
there is substantial variation in the weights. However, if all
the weights are approximately equal, then the T% term is the
dominant one in (22). Thus, there is a transitional behavior for
Q, in the use of the general power-law processor T, defined in
(23), as the weight structure and its size M varies. (The best
choice of v will have to wait for detailed receiver operating

characteristics of the power-law class of processors.) Observe

that processor Tv does not need to know or use M or {§m}.
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CUBIC COMPONENT OF OPTIMUM PROCESSOR

We presume that M 2 3 in this subsection; the special case of
M = 2 is treated separately. The cubic term in expansion (16)

is, using (15),

N N N
Q3 = E E LI Y
J=1 k=1 %

3
_ [El xj t Wy X b oere yﬁ xx] . (31)
no two equal

1

But, since Q3 is cubic in the data {xn}, we must have exactly

Q; = Ay Ty + By Ty Ty + C 3

3 T3 3T, T 3Ty - (32)

In order to determine coefficients A3, B3, and C3, we first

set all x, = 1, obtaining for (31) and (32)

i N(N-1)+-+(N+1-M) = A, N + B N2+ c, N° . (33)

W 3 3 3

On the other hand, with x, = 1 and all other x, = 0, we obtain

for (31) and (32)

W, (N-1)+++(N+1-M) = A, + B, + C (34)

3 3 3 3°

Finally, with x; = 1, x, = 1, and all other x, = 0, there follows

for (31) and (32)
[W3 (2N-8) + W2 W1 6](N—2)'--(N+1—g) = A3 2 + B3 4 + C3 8 . (35)

The solutions to these last three linear equations are

17
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_ 2 3
A, = K3 [W3 N& - W2 W1 3N + W1 2] '

_ 3
By = Kj [-w3 N + W, W, (N+1) - Wl] 3,
c, = K [ W, 2 - W, W, 3+ w3] (36)
3 3 3 2 71 1) !
where we have defined
K3 = (N-3)(N-4)-++(N+1-M) for N2 M 2 4 ; (37)

also, Ky = 1 for N 2 M = 3. The results in (36) reduce to a

scaled version of [4; (18) - (19)] when all the weights {ym} are

equal. In the special case of N 2 M = 2, we find

0y = (1) [w] + 3] T3+ 3w wy (w4 wy) (77, - T3) - 39)

Numerical investigation of coefficients A3, B3, and C3, for
different values of M and weight structures {ym}, reveals that
the last term in (32) is dominant when all the weights are equal
and when M > 10 approximately. On the other hand, when there is
significant weight structure variation, the last term in (32) is
the least significant. Thus, as the weight structure and its
size M varies, there is a transitional behavior for Q3 in the use
of the members of the class of power-law processors Tv and the
particular power v; this observation is consistent with [4].
Again, the best choice of v cannot be made without determining
the receiver operating characteristics. However, there is no

need to know M or {S 1 in order to realize processor T.

18
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APPROXIMATE LIKELIHOOD RATIO TEST

When definitions (17), (21), and (31) are employed in (16),

the power series expansion of likelihood ratio test (8) becomes
1 1 >
Ky +0, +50, +¢ Q3 + 200 LV, (39)

where Ql’ Q2, and Q3 are given by (18), (22), and (32),
respectively. These quantities are quickly and easily evaluated
from the data {x_}. If the infinite series in (39) is terminated
with the Q3 term, for example, we obtain an approximate
likelihood ratio test, which could easily be computed; this is in
sharp contrast with the original exact likelihood ratio test (8).
However, the terminated version of test (39) would not perform as
well as test (8), since (8) is the optimum processor.
Nevertheless, terminated versions of expansion (39) might be

useful in estimating the performance of the likelihood ratio

processor (8), which itself cannot be simulated for even one
trial when N is large. This route for determining the
performance of the likelihood ratio processor (8) has not been
pursued any further; as one cautionary note, the approach of
terminated versions of (39) to optimality may not be monotonic in

the number of terms retained.
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SPECIAL CASE OF EQUAL SIGNAL POWERS

When all the signal powers {§m} are equal to a common value

S, all the weights {w_} reduce to common value w = S/(1 + 8).

k

Then, (23) yields W = Mw", and the terms in (39) simplify to

Q =K HwT .,

_ 2 2
Q, =K, Mw {bzz T, + by T1] '
0, = K, M w [b T, + b,, T, T, + b T3] (40)
3 1 M ¥ |b33 Ty + b3y Ty Ty + Dgyy Tq)
where coefficients
N-M M-1
by =71 ¢ Pa1 TR (41)
and
N-M N-2M M-1 N-M M-1 M-2
by =FTHT ¢ P2~ 3fTwz’ P31 m1W-2° (42)

Observe that the sum of the coefficients in (41) is equal to 1,
as is the sum of the coefficients in (42). These results confirm

those in [4; pages 9 - 14].
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EXTRACTION OF THE POWER-LAW CLASS OF PROCESSORS

The expansion of the general likelihood ratio test in (39)
can be developed in more detail in terms of the power-law sum T,

defined in (23). Namely, the sufficient statistic is

2
b, + b, T, + [b22 T, + byy Tl] +

- ot P T
+ b T, + b T, T. + b T3 +
33 T3 * b3y Ty Ty + b3y Ty
+b,, T, +b,, T, T. + b, T2 + b,, T, T2 + b, T3 + +-+. (43)
a4 Tg ¥ Pg3 T3 Ty +byy Tp +byy Ty Ty + by T .

This expansion suggests (but does not directly imply) the
consideration of processor T, itself, for various v, as a
decision variable in practical situations where coefficients
{bkn} are unknown. The dependence of the resultant processor on
the unknown number of occupied bins M and the unknown weights
{w,} (that is, signal powers {S,}) is thereby eliminated.
However, this abrupt selection constitutes a significant break in
the continuity of the analysis of the optimum processor and could
lead to severely degraded performance.

If, instead, we were to attempt to keep groups of terms to a
particular order, they would have to be weighted in accordance
with information that is not available in practice. Thus, this
step of adoption of the power-law processor is a crude but
necessary one for realizing a practical realistic processor, and
one that cannot be avoided in our approach to the detection

problem. It is mandatory at some point to face the issue of
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eliminating dependence on signal parameters that were assumed,
but are, in reality, unknown. Furthermore, there is little
guidance available in making this most crucial step in deriving a
viable practical processor; some considerable amount of trial and

error would probably be involved in most circumstances.
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PERFORMANCE OF POWER-LAW PROCESSORS

Integer M is the actual number of bins occupied by signal
components, quantities {§m} for 1 £ m £ M are the actual
(arbitrary) values of the average signal powers in the M occupied
bins, and L is the actual set of M occupied bins. All these
quantities are considered unknown to our practical signal
processor, namely, the power-law processor.

Given observation {x,} for 1 £ n £ N, the power-law processor

will be used for signal detection. 1Its decision variable is

(44)

N
[}
=]
il =
=
]
B <
AV
<

This processor is to be used regardless of the actual (unknown)
values of M, {§m}, and L. Through proper choice of the power v,
we will show that the performance of this power-law processor is
very close to the optimum processor, (8), which knows and uses
M and {S_ }, but also lacks knowledge of occupied set L.

For future use, we define the function

hv(a) &= J dt exp[- t + iatv] ’ v >0, (45)
0

for all real a. Then, under hypothesis Hy, the characteristic

function of decision variable z in (44) is given, for real &, by
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£0(5) = Ep(TEaT = T ] expitny) -
L (&) = exp(1&z) = n={ exp|ifx | =
Nco N
=T] J du exp(-u) exp[i{uv) = [hv(E)] . (46)
n=1 0

Oon the other hand, under hypothesis Hy, the characteristic

function of the m-th (signal) term in (44) is, by (2) and (4),
- [
exp[i{x;] = I du a, exp(— gmu] exp[i{uv] = hv[E/gm] . (47)
0

This yields the characteristic function of decision variable z in

(44), under hypothesis Hy, in the form

M

L — v
TTn(e esy®) (48)

£_(8) = [hv(a)]N-"

regardless of which set of bins, L, is actually occupied. Thus,
for both hypotheses HO and Hl’ the major effort centers around
determining the function h (a) defined in (45).

For small o, we obtain directly from (45) the behavior
hv(a) ~ 1+ ia T(v+l) as a > 0 . (49)

This result can be used to find the behavior of (48) for small
f, which enables exact determination of the mean of z under

hypothesis Hy in the form

M
p, = T(v+l) [N - M+ % (1+§m)\’ . (50)
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Plots of false alarm probability P, versus threshold v
are already available for v = 1 in [2; figure 50] and for
v=2, 3, 2.5 in [4; figures 1, 2, 3 respectively].

Observe from (49) that hv(O) = 1, independent of v. And,

from (45), we have immediately

1
hl(a) il for all real a . (51)

Also, by means of [5; chapter 7], we have

3 .
. n -1+1
hz(a) = (1+1) (5&) w[————g] for a > 0 , (52)
(8a)
where w( ) is the error function of complex argument. Finally,

for v = %, there follows, in a similar fashion,

h%(a) = 1+ 1 rt;i w[ ] for all real a . (53)

NiQ
NIQ

Major interest in power-law processor (44) will center around
values of v in the range 1 to 3; see [4]. However, for
completeness and for application to very small values of M,

results for the limiting case of v = » will be presented first.
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MAXIMUM PROCESSOR, v = @

As v tends to infinity, the performance of the power-law
processor in (44) tends towards that of the maximum processor,

1/Y in (44) tends

z = max{xl,...,xN}. (Strictly, the variable z
to the maximum variable as v = «; however, the power can be
absorbed in a modified threshold v, with no change in detection
performance.) Using the statistical independence of all the

random variables {xn}, the cumulative distribution function of

the maximum variable z is

Cz(v) = Pr(z < v) = | | Pr(xn <wv) . (54)
n=1
Therefore, the exceedance distribution function of z under

hypothesis Hy, namely, the false alarm probability Pe, is
o _ N
Ez(v) =1 - [1 - exp(-Vv)] for v > 0, (55)

which is easily computed. On the other hand, under hypothesis
Hl' the exceedance distribution function of z, namely, the

detection probability Pyr is

M

E,(v) =1-[1- exp(—v)]N_E T - exp(-a v)} for v > 0 . (56)
m=1

These results generalize those given in [3; (30) - (33)].

Receiver operating characteristics for this case of v = «» can be
readily obtained directly from (55) and (56), for any N, M, and

set of signal powers {§m} of interest.
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LINEAR-LAW PROCESSOR, v =1

Here, we consider power-law v = 1 in test (44). Then, under
hypothesis Hy, the characteristic function of decision variable z

is given, by reference to (46) and (51), as

1

£2(8) = [hy(E)1N = ———
z 1 (1 - iE)N

. (57)

The corresponding false alarm probability is

[

N-

[T

P, = Pr(z > v|H0) = exp(-v) %T vk for v > 0 . (58)

oy
il

0

Plots of P, versus threshold v are available in [2; figure 50].
On the other hand, under hypothesis Hy, the characteristic

function of z is, by reference to (48) and (51),

£ (8) = . (59)

1

M
- i)™ TT(1 - 1z

m=1
These results generalize those given in [2; pages 21 - 22].
Receiver operating characteristics can be obtained from (58) and
(59) by employing the techniques in [6] for evaluating the
exceedance distribution function Py directly from the
characteristic function (59). The mean of z under hypothesis Hy

is obtained by setting v = 1 in (50), yielding

M
p, = N+ ;=£ s, - (60)
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QUADRATIC-LAW PROCESSOR, v = 2

In this subsection, we consider v = 2 in power-law processor
(44). The characteristic function of decision variable z under
hypothesis H is, by reference to (46) and (52),

N
-1+i

(88)

for £ > 0, (61)

(1+i) [5%)% w

o _ N _
fz(i) = [hz(i)] = L
where w( ) is the error function of complex argument. Plots of
false alarm probability P, are available in [4; figure 1].

On the other hand, under hypothesis H,, the characteristic

function of z is, by reference to (48),
M
£,2) = (01" H T h, (e (1+s?) | (62)

where function hz(a) is given by (52). These results generalize
those in [4; pages 15 - 16]. Availability of an accurate
computer routine for the error function of complex argument,

w( ), enables ready determination of the receiver operating
characteristics of the quadratic-law processor through employment
of the procedure in [6]. The mean of z under hypothesis Hy is

obtained by setting v = 2 in (50), resulting in

M
— 2
p, = 2|N + %;; [2§m + §m]] . (63)
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GENERAL VvTH-LAW PROCESSOR

The decision variable z in this case is given by (44). The
general characteristic functions of z have been given by (46) and
(48) under hypotheses Hy and Hy respectively. The mean of z
under hypothesis H, was given in (50). The function hv(a)
defined in (45) can be expressed, for a 2 0, in the alternative

form
©
hv(a) = J dr exp[-arv - exp(i%)r + %%] . (64)
0
Here, we moved the contour in the t-plane in (45) to the radial
line with angle n/(2v) radians, and then made the change of
variable t = r exp[in/(2v)]. Since values of v greater than 1
are of interest, the integral on real r in (64) has more rapid
decay than the original integral on t in (45). In addition, the
oscillation of the integrand in (64) is constant with r; whereas
the oscillation continually increases with t in the original
integral in (45). Thus, (64) is computationally advantageous.
(For v = 2.5, also let r = x2 in order to eliminate the
singularity at the origin.)
The characteristic function of decision variable z in (44) is
given by (46) under hypothesis Hy. We numerically evaluate it
and false alarm probability Pe directly, with the aid of (64).

Plots of Pf versus threshold v are available for v = 3 and 2.5 in

[2; figures 2 and 3, respectively].
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However, for hypothesis Hl’ in order to reduce the
computational effort, we directly simulate the vth-law processor
in (44) to determine the detection probability Pyi this mixed
procedure (analysis for Pe and simulation for Py) is generally
adequate for Pd values in the interval from 0.5 to 0.99, which is

our detectability range of major interest.
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OPTIMUM BANDED PROCESSOR FOR ARBITRARY SIGNAL POWERS

The optimum processor with zero knowledge of occupied bin
locations L cannot be realized or simulated, due to the excessive
number of terms that must be evaluated; see (8) and (3).
Accordingly, just for purposes of deriving a bound on the
performance of the optimum processor, we will modify the
zero-knowledge situation to an alternative one where there is a
small nonzero amount of partial knowledge about the signal
bin-occupancy pattern, namely, a banded signal structure. The
corresponding optimum banded processor that operates with this
partial location knowledge must perform better than the zero-
location-knowledge optimum processor, which in turn always
performs better than the (ad hoc) power-law processor, regardless
of its choice of power v. That is, the receiver operating
characteristic for the partial-location-knowledge optimum banded
processor also constitutes an upper bound on detectability for
the receiver operating characteristic for the power-law
processor.

It should be recognized that both the zero-knowledge optimum
processor and the optimum banded processor are unrealistic for
practical applications, in that they employ information not
typically available, such as M and {S}. These mathematical
artifices are introduced here solely for purposes of determining
an upper bound on performance that any processor can achieve in

the particular environment under investigation.
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OCCUPANCY PATTERNS FOR UNEQUAL SIGNAL POWERS

In order for this upper bound to be a useful tight bound, the
amount of partial knowledge about the signal occupancy patterns
must be kept as small as possible; it cannot be zero because of
the difficulty of realizing the corresponding optimum processor,
(8). Since we can inject this partial location knowledge in
absolutely any way and amount that we please, we construct the
following situation for the optimum banded processor to operate
in; the reason for adopting this particular approach will become
apparent when we derive the likelihood ratio test in closed form
and succeed in significantly simplifying it for simulation
purposes.

All the quantities M and {§m} are known to the optimum banded
processor, but the precise set of bins occupied by signals in one
observation is known only in a particular banded sense. 1In order
to determine the allowed signal occupancy patterns, we define the

set of quantities

s
— for 1 <m <M ; (65)

observe that the {?m} sum up to N. Since the gquantities {fm}
yielded by (65) will not generally be integers, we round these
quantities to their nearest integers {Fm}; then, adjust these
latter integers slightly if necessary, so that Fy + --- ¢ Fy = N.
At the same time, guarantee that Fm > 1 for all m; when the;e is

a wide variation in the set of signal powers {S_ 1}, this may

require some readjustment of the larger F values. (An

32



TR 11123

alternative, more general technique will be presented later.)
Now, break the total number N of search bins into M disjoint
bands, denoted by Bl’ B2’ ceey Bﬂ' of sizes Fl, F2, ceey Fﬁ’
respectively. In the m-th band B under hypothesis Hy, allow
only one bin to be occupied, by a signal of power Sqar with equal

probabilities l/Fm of landing in any of the Fo bins in this band.

Observe that the "average signal power per bin" is, from (65),

(ZaY
=

___—l e e
= Im o [_s_1+§ + +_s_y_] for 1 < m (66)

N 2
that is, the ratio §m/Fm is approximately independent of the
particular band number m. The larger signal powers, Sqr command
larger band sizes, For according to (66), thereby requiring a
larger search in those bands, which adds to the confusion faced
by the optimum banded processor. This fractionalization (65) of
the search space N would appear to be the least advantageous for
the optimum banded processor, degrading its performance and
thereby furnishing a tight bound on attainable performance.

An alternative, where the signal powers {§m} in (65) were all
raised to the uy-th power, was also considered, for the values of
py=20.5 1, 1.5, and 2. The tightest bound (that is, worst
performance) appeared to be achieved for p = 1, although the
discrepancies were not very large in the few cases that were
investigated numerically. Accordingly, further consideration has

been limited solely to py = 1.
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OPTIMUM BANDED PROCESSOR TEST

The optimum banded processor for this situation has the exact

decision rule (which is derived in the next subsection):

> exp[ym xn]] z v . (67)

In its expanded version, test (67) takes the form

7 explu, xn]]

nsB2

> exp[y1 xn]

nsBl

Likelihood ratio test (68) requires a total of N exponential
evaluations, followed by N - M additions and M - 1
multiplications, for a total of N - 1 operations per trial,
independent of M. Test (68) is capable of simulation in a
reasonable amount of computer time; this simplification of the
likelihood ratio test is explicitly due to our deliberate
introduction of the M disjoint bands {B}. The selection of the
band sizes, {Fm} or {fm} in (65), is done for a different reason,
namely, to degrade the performance of this optimum banded
processor as much as possible, thereby achieving a tight bound on
performance.

As a special case, for M = N, suppose we take band size

Fm = 1 for all m; then, test (68) reduces to the linearly

weighted sum

N >
> Wo X, ¢ Vo (69)
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This particular optimum banded processor in (69) can be easily
analyzed in terms of its characteristic functions for both
hypotheses H and H,. Whether this processor in (69) yields a
sufficiently tight bound on the power-law processors for M = N
will depend on the particular distribution of signal power values
{Sy}7 it is believed that (69) will be a good comparison case,
except when the signal powers are rather different from each
other. In this situation, we could take band sizes {Fm}
according to (65) and then employ the rounding procedure
described earlier.

An example for N = 1024, M = 4, and {§m} =7, 6, 5, 4 dB

yields the following results. From (65),

349.91, 277.94, 220.78, 175.37;
= 350, 278, 221, 175; sum = 1024. (70)

In this case, rounding of {fm} yields a set of integers {Fm},
which still add up to N = 1024, so that no further modification

is needed.
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DERIVATION OF OPTIMUM BANDED PROCESSOR

Under hypothesis Hy, the joint probability density function

governing the observation {xn} is, as usual,

N
Do(Uyree-rty) = IZI{exp(—un)} for u > 0, (71)

where we have utilized the statistical independence of the
individual members of observation {xn}.

Under hypothesis Hyy let us assume for the moment that bin j
is occupied in band B; of size Fy; bin k is occupied in band B,
of size Foreees and bin & is occupied in band By of size Fye
We also require that signal m be located somewh;re in band_ﬁm
for 1 £ m < M and that all the bands {Bm} be disjoint. Then,

since there is a total number of

F, =+ Fy (72)

2

possibilities for the occupancy patterns, all assumed equally
likely, the joint probability density function governing the

observation {xn} is, for this particular condition,

1 .

F 2 exp[—_a_t_1 uj] 2, exp[—g2 uk] .o éﬁ exp[—gM ux] R(j,kreee,R)
(73)

where remainder R(j,k,...,X) contains all the {exp(—un)} terms

not accounted for, namely,

R(j,K,ooe %) = T ] exp(-uy) T [ exp(-uy) =-- T T exp(-u,). (74)
msB1 neB2 psBM

m#3 n#k pER
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The joint probability density function governing the

observation {x,} under hypothesis Hy is therefore

1
Py (Uqyeee,Uy) =2 > cee = a exp[— a u.] X
171 N jeB; keB, XeBM[F ! 13

X a, exp[- a, uk] cee éﬁ exp[— g& ux] R(j,k,...,X)] . (75)

The likelihood ratio of the observation {xn} is given by

a a o e a
p (x ,o.o,x ) _1 _2 —_M_
LR = 1(x1 xN) = F E E oo E exp[gl x.] X
Po{XyreeerXy jeB, keB XeB ]
1 2 M
X exp[y2 xk] se exp[yM XX) . (76)

The likelihood ratio test is therefore

2 E e E exp(w x.] exp[w X ] s exp[w X ] > v . (77)
. ¥1 %5 ¥y *x ¥ *R) <

JeB, ksB2 XsBM —

There is a total of F terms in this M-fold sum; see (72).
However, when each of the summations is moved to the appropriate
term in the M-fold product, the end result for the likelihood

ratio test may be written in the much more economical exact form

> v. (78)

5 eXP[Ez xk]] ...

keB2

E exp[yM xx]
XsBM -

ool

jeB,

An alternative more compact expression for (78) is
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> exp[ym xn]] Z v . (79)

n
sBm

M
TT
m=1

This is the result quoted earlier in (67).
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OPTIMUM BANDED PROCESSOR WITH PAIRING

A problem arises with the procedure given in the previous
section when the variation of the M average signal powers {S,} is
significant, that is, when max{§m} >> min{§m}. In particular,
when the quantities {fm} in (65) are rounded to their nearest
integers {Fm}, some (many) of these latter integers can turn out
to be zero. This means that the corresponding (weak) signals
receive no representation in terms of a band assigned to them.
This drawback of the assignment procedure will naturally be taken

advantage of by the optimum banded processor, which will

automatically restrict its search only to those fewer bands where
it knows that signals can occur. The upshot is that the
performance of the optimum banded processor improves, thereby
weakening the desired tight upper bound that is desired. 1In
order to prevent this improvement, we must create a signal
assignment which leads to more confusion for the optimum banded
processor; that is, we are trying to set up a signal arrangement
which will lead to the worst possible optimum banded processor.

This prompts the creation of the following pairing procedure.
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PAIRING PROCEDURE

In order to circumvent this assignment shortcoming and to
tighten the bound, a pairing procedure has been devised. Without
loss of generality, we assume that the signal powers {S_} have

been arranged in descending order:

S, 28,2 "+ 28,>0. (80)

(This ordering has nothing to do with where the signals are
actually located in practice, which is still random and
nonoverlapping; this assumption (80) is used only in the optimum
processor for purposes of deriving a bound.) Then, we pair up

the strongest and weakest signals according to the power sums

ME'i'_ ’ (81)

where it is presumed that M is even.

This procedure significantly reduces the ratio of modified
powers, max{Tm}/min{Tm}, so that all the signals can get some
representation. For example, consider a signal power set {§m},

which varies linearly over a 20 dB range, say 100 to 1. Then,

n

T, = 100 + 1 while T 10 + 10, which yields a new power ratio

1 M
of 5, or 7 dB. Thus, a reduction of 13 dB in power variation is
realized for this example.

Now, we form M = M/2 bands, with band sizes {Fm} proportional

to power sums {Tm} instead of original powers {§m}; that is,

similar to (65), we define the set of quantities
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T
~ = m _l
F,. =N T, + T, + - ¥ T, for 1 £m<M=3M. (82)

Observe that the {fm} sum up to N. Then, we round these
quantities to their nearest integers {F,} and modify them, if
necessary, so that they again sum to N: Fi + Fy + <0 + Fy = N.
Also, we insist on Fo > 2 for all 1 < m £ M, so that there will
always be guaranteed representation for all signal pairs,
regardless of their total strengths. This may require further
modification of the values of integers {Fm} for the strongest
pairs.

We now have M bands of sizes {Fm}; denote them by {Bm},
respectively, for 1 < m £ M = M/2. Then, just as in the power
combination in (81), signal pair 1 and M are assigned to band By,
signal pair 2 and M - 1 are assigned to band B,, and signal pair
M and M + 1 are assigned to band By. Furthermore, within each
band B each pair of signals (when present) can occur equally
likely in the Fo bins in this band B/ but can never overlap each
other in the same bin. (This nonoverlapping condition will be
recognized to be exactly the same situation for signal locations
as when we had the special case of M = 2; in fact, we are using
that case as a "building block" for the more general case of

large M where we must employ pairing.)
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DERIVATION OF OPTIMUM BANDED PROCESSOR WITH PAIRING

The optimum banded processor with pairing, to be denoted
OPT-P, does the usual exhaustive search over all the possible
combinations, now taking into account that there are M disjoint
bands {Bm} of sizes {Fm}, each with two signals, instead of one.

That is, similar to (78), the decision rule for the OPT-P is

|, el =y | | i 5|

,ksB1 - j,ksB2

>
cee X .zf exp[yM xj + Wy xk)] <V s (83)

where the slash on each summation means that we must have j # k.
In the m-th band B/ there are F (F - 1) possibilities for
the pair of subscripts j,k; since m can range from 1 to M = M/2,
the total number of possibilities can become a large number when
the search range N and the number of signals M are large. In

order to simplify the calculations, notice that

Yo a8y =

J,ksBm

o) o - Tp e 8 (84)

jEB ksB JEB

which requires consideration of only 2 F possibilities. Thus,

for example, the first term in (83) can be expressed as

> exp[yE xk]

ksB1

X exp[yl xj]

J€B,

Y exp((u; + wy) xj]] -

j€B,

= [611’”812*"’*315' ][e 1 em2t " ey ] [lleMl '+elFlegF1]'(85)
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where we have defined

emn = exp[ym xn] for 1 £{m<M, 1<n<N. (86)

Similar forms to (85) hold for the remaining terms in (83).

In order to evaluate (85), 2 Fy exponentials must be
computed. Since the {Fm} sum up to N, this means a total of 2N
exponentials are required in evaluating the complete decision
rule, (83), for the OPT-P, when the differencing scheme in (85)
is employed. However, to determine a single curve on a receiver
operating characteristic, both a false alarm probability and a
detection probability must be simulated, each of which will
require the evaluation of 2N exponentials.

This observation regarding the false alarm probability Pe is
worth emphasizing. Since the weights {w,} in optimum test (83)
depend on the particular signal power set {S } assumed to be of
interest, according to (4), it is necessary to rerun Pg for each
different curve on the receiver operating characteristic of the
OPT-P. This is in distinction to the usual case (like the
power-law processor) where a single common Pf run can be plotted
against several different P4 runs, to obtain a complete set of
characteristics. This drawback only exists for the (unrealistic)
optimum processor, and does not occur for practical processors.

There is a numerical facet of modified form (85) that must be
addressed in order to avoid overflow or loss of significance
during the calculations. During simulation of a detection

probability Pyr the two bins that contain signal lead to larger
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values of the corresponding observations N and to very large
values of the corresponding exponentials. This leads to
differences of large quantities in (85) on occasion, an effect
that was not present in original form (83), which contained only
sums of positive quantities.

In order to preserve the advantageous numerical shortcut of
(85), the four large terms in (85) must be treated specially.
For example, during simulation, suppose we locate the two signals
in band B1 in bins 1 and 2, without loss of generality. Then,
the four exponentials €11r ©qp/ egl, egz can become very large on

occasion. Therefore, we separately conduct the three sums

r, = e, + e + e1F1 r S T eE3 + e+ + eMFl p
t, = e, eg3 + o + elFl eﬂFl . (87)
Then, the output from band B, in (85) can be expressed as
[ell + e, t rl)[eEl + ey_2 + sl] - [ell eyI_1 + e, e_l‘22 + tl] =
= ell[egz + 51] + [e12 + rl][eEl + sl] + ry eMZ - t1 . (88)

Although there is still one difference left, that term, tl’ does
not involve any of the large exponentials, thereby avoiding
cancellation and loss of significance. The damaging very large
negative terms, namely €11 € and €15 €yyr have been completely
eliminated from the final co;butation. ;elations identical to
(88) can be derived for the remaining bands {B } for all 1<m<M,

and have been employed in the simulation of OPT-P test (83).
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If pairing were insufficient to realize a tight enough bound
on performance, the procedure could be extended to tripling,
where three nonoverlapping signals are grouped in one band. This
constitutes still more confusion for the optimum processor.
However, it also leads to additional computational burden. For
example, the useful simplification of the double sum in (84)

would then have to be replaced by the triple sum equivalent

%;;ajﬁka = E;Qj Egﬁj E:Yj + ZE:GijYj -

J J

- [Zj"j LBy * LBy Loyvy * LY Zj“jﬁj] : (89)
However, there will now be nine large exponentials that would
need special handling in order to avoid loss of significance, due
to the presence of the minus signs in shortcut (89). This
tripling procedure has not been found necessary to use in this
current study, at least for the particular parameter values
considered here.

In the special case where M = N, OPT-P test (83) reduces to

N/2
l {{exp[yn x, t W xk] + exp[yn x, + W xn)} Z v, (90)
n=

where k = N + 1 - n. This sum of positive terms requires the
evaluation of only N exponentials.

In the further special case where all the signal powers {8y}
are equal, then the weights are equal and (90) can be further
reduced to the standard result for the energy detector, namely,

comparison of linear sum X, Xy + e 4 oxy with a threshold.
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EFFECTIVE NUMBER OF OCCUPIED BINS AND EFFECTIVE SIGNAL POWER

When the M signal powers {§m} are unequal, it would be
very tedious to have to determine a new receiver operating
characteristic for each particular set of values for {§m}. In
this section, we determine an effective number of occupied bins
Me and an effective signal power Se that can replace a given
(unequal) set of powers, {§m} for 1 £ m £ M, in order that the
previous results in [4] can be used, at least approximately.

First, we define the two sums

M M
2
c,=% . s_, c, =95 _ sZ. (91)
1 =1 ™ 2 =1 ™
Without loss of generality, we order the M signal powers {§m} in
descending order. Then, we replace the actual power distribution
{§m} by a boxcar of height se and extent M, such that the sum of
the signal powers and the sum of the squared signal powers are
both preserved. That is, we require that ¢, = Se Mg and
2

C2 = Se Mg . The solutions to these equations are the effective

values

- N

M
S = —I , for which Se Me = C1 = ;=1 §m

=
[}
Ol 0
(N}
0]

. (92)

This selection of effective values involves all the individual
signal powers {8y} for 1 £ m < M. Furthermore, the calculation
is straightforward, not requiring the solution of any

transcendental equations.
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If all the signal powers {§m} are equal to S for 1 £ m < M,
then (92) reduces to Mg, = M and Se = S, as expected. On the
other hand, if only one signal power is nonzero, then (92) yields
M, = 1 and Se equal to that power value §1, again as expected.

It should be noted that this approach does not include any
dependence on the specific power-law v of the nonlinearity x';
however, it can be verified that this choice of effective values
in (92) is equivalent to matching the first two moments of
decision variable z in power-law processor (44) for the
particular power v = 1; see appendix A.

Since the effective number Mg yielded by (92) will not
generally be an integer, we then round M, to the nearest integer,
simultaneously varying Se SO as to keep the product fixed at the
value C,, as in (92). For example, consider M = 4, four occupied
bins, and {§m(dB)} = {10, 9, 8, 7}. Then, we find M, = 3.756,

Se = 7,792 = 8.92 dB, and C1 = 29.26. We round these values to

M
e

4 and S¢ = 7.316 = 8.64 dB. We would now be prepared to
enter the earlier receiver operating characteristics for the
corresponding power-law processor in [4], using these latter
rounded values for M, and S in place of M and S.

The number of search bins N is not altered by any of these
replacements, and need not be changed in utilizing the earlier
plots in [4]. Rather, the values of M and S to be employed with
the previously plotted receiver operating characteristics are

those given here by M, and S, in (92), or their rounded versions.
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RECEIVER OPERATING CHARACTERISTICS FOR EQUAL SIGNAL POWERS

In this section, we will present several receiver operating
characteristics (ROCs) for the case of equal signal powers; that
is, §; = 8§; for 1 < m < M. The corresponding ROCs for unequal
signal powers {§m} are collected together in appendix B.

Due to the unlimited number of possibilities for unequal
signal powers, we have confined consideration to power sets for

which the m-th signal power (in decibels) follows a linear law:

5.(dB) = §;(dB) - (m-1) A(dB) for 1 <m <M . (93)

Thus, the strongest signal power in the set occurs for m = 1,
without loss of generality. The decrement is A(dB) from signal
to signal, with a total power variation across the set of

(M - 1)A dB. All the results in this section are for 4 = 0 dB,
that is, equal signal powers. Results for total signal power
variations (M - 1)A of 3 dB, 6 dB, and 9 dB are given in the next
section and appendix B.

The first example in figure 1 is for v = «, the maximum
processor, with M = 2 and N = 1024. (All the equal-signal-power
figures are collected together at the end of this section.) The
solid curves apply to the power-law processor (PLP), and are
indexed by the largest signal power in decibels, §1(dB). The
false alarm and detection probabilities, Pe and Pyr were
determined directly from analytic results (55), (56), and (4).
Superposed as a dashed line is the ROC for the optimum banded

processor with pairing, OPT-P, based upon a simulation employing
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10 million independent trials for both P. and Py- The pair of
arrows point to the two curves with identical power level sets
{§m} for the PLP and for the corresponding OPT-P. The closeness
of these two particular curves indicates that if the PLP (which
is totally ignorant of M and {S_ }) were allowed to operate with a
signal level that is less than 0.1 dB stronger, it would be able
to achieve the same performance level as the optimum processor,
which knows and uses all these parameter values.

The deviation between the OPT-P simulation and the PLP
analytic calculation, near false alarm probabilities Pe = 1E-6,
is probably due to the rather limited number of trials used for
that region, namely 1E7 trials. Thus, this region of the
simulated ROC (dashed curve) is not too trustworthy.

The apparent smoothness of the simulated ROC in figure 1 can
be somewhat misleading. Since the single set of 1E7 Pg trial
results is used to estimate the exceedance distribution function
for all threshold values, there is considerable correlation
between the probability estimates; see appendix C. For two
thresholds located fairly close together, this high degree of
correlation means that the two probability estimates will
fluctuate together, with both tending to be high or both tending
to be low for a particular run of data. This will tend to make a
plot of the sample exceedance distribution function versus
threshold look smoother than it really should. Coupled with the
same behavior for the Pd simulation, this effect will lead to

sample ROCs with a smoother appearance than justified, and can be

misleading regarding stability.
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The only change in figure 2 is to increase M from 2 to 4.

The slightly larger discrepancy between the two corresponding
curves (see arrows), namely, ~0.2 dB, is consistent with the
observation [1] that the maximum processor, v = », is more nearly
optimum for very small M. This trend is continued in figures 3
and 4, where M = 8 and 16, respectively. When the number of
occupied bins reaches M = 16, the maximum processor is about 1 dB
poorer than the OPT-P in the neighborhood of our standard
operating point, namely, P, = 0.001 and Py = 0.5. This is a loss
that we do not have to accept, if we will simply change the power
law v. We have not investigated larger values of M than 16 here
for v = », because the losses increase dramatically, and a
different PLP should be used, instead.

Receiver operating characteristics for the PLP v = 3 are
presented in figures 5 - 11 for M = 2, 4, 8, 16, 32, 64, 128,
respectively. Here, the detection probability P4y for the PLP was
evaluated by simulation, with the number of trials as indicated
on each figure. The false alarm probability P, was found
analytically by means of (46) and (64). Thus, the ROCs for the
PLP are rather accurately located. Comparisons at the standard
operating point with the best ROC (dashed curve) for the OPT-P,
reveal that the minimum loss with PLP v = 3 occurs around M = 16
or M = 32, namely, on the order of 0.1 dB. By the time M = 128
is reached in figure 11, the loss near Pg = 1E-6 is well over
1 dB. Therefore, as above, still larger values of M were not

3.

investigated here, at least for v

51




TR 11123

Receiver operating characteristics for PLP v = 2.5 are given
in figures 12 - 18 for M = 8, 16, 32, 64, 128, 256, 512, respect-
ively. Now, the minimum loss occurs near M = 64; see figure 15,
where the PLP performs near optimality. The minimum loss is less
than 0.1 dB at the standard operating point, but becomes greater
than 1 dB for larger M, such as M = 512 in figure 18.

Receiver operating characteristics for the square-law PLP
v = 2 are given in figures 19 - 24 for M = 32, 64, 128, 256, 512,
1024, respectively. In this case, the minimum loss occurs near

M = 128; see figure 21, where the curves for the PLP and the

OPT-P virtually overlap over the complete range of Pe plotted.
For the larger value of M = 1024 in figure 24, the loss increases
to about 0.6 dB at the standard operating point.

Finally, the ROCs for the standard "energy detector" v = 1
are presented in figures 25 - 28 for M = 128, 256, 512, 1024,
respectively. Lower values of M (less than 128) were not
considered here for v = 1, due to their larger losses. As
expected, the minimum loss of 0 dB is realized in figure 28 for
M = N = 1024, where the two ROCs for the analytical PLP and the
simulated OPT-P are virtual overlays.

From these plots, the signal powers required to realize the
standard operating point can be extracted for the various PLPs
employing different values of power law v. Furthermore, the same
information for a higher quality operating point, such as

P, = 1lE-6 and Py = 0.9, is also available from these plots.

f
These results indicate what signal levels will be required in

practice to reliably detect random signals in this environment.
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PERFORMANCE OF POWER-LAW PROCESSORS FOR UNEQUAL SIGNAL POWERS

As stated previously, a number of receiver operating
characteristics for unequal signal powers have been run for the
PLP and the OPT-P; they are collected in appendix B. They
correspond to the 28 figures given above for equal signal powers.
In particular, a complete set of 28 ROCs has been run for each of
the three cases (for a total of 84 figures), where the signal
power variation (maximum relative to minimum) is approximately
3 dB, 6 dB, and 9 dB, respectively, across the total signal set;
see the discussion surrounding (93) for additional details, such
as the linear variation with signal number, m.

The first ROC in appendix B, figure B-1, corresponds to the
maximum processor, v = ®, with M = 2, N = 1024, and the signal
decrement A = 3 dB. That is, the difference in decibels between
adjacent signal strengths in the set of size M is A dB; see (93).
The superposed dashed curve in figure B-1 is the ROC for the
OPT-P, which knows and uses the knowledge of M and of all the
unequal signal powers {§m}. The label §1(dB) on each curve
corresponds to the maximum signal power (in decibels) in the
signal set of size M. A similar procedure and notation has been

adopted for all the remaining figures in appendix B.
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LOSS BEHAVIOR OF POWER-LAW PROCESSORS

From the totality of ROCs in the previous section and in
appendix B, it is possible to make a direct quantitative
comparison of various PLPs (that is, different v) with the OPT-P.
In particular, the additional signal power level required for the
PLP, in order to match the OPT-P detection performance at the
standard operating point, can be extracted. This is called a
loss here, in that it is the amount by which the PLP falls short
of optimality.

Results for this loss (in decibels) for the standard energy
detector, that is, PLP v = 1, are plotted in figure 29 for search
size N = 1024 and for the required detectability level at the
standard operating point, namely, P, = 0.001, Py = 0.5. It is
very important to notice that the abscissa in figure 29 is
effective number Mg defined in (91) and (92), not simply M, the
number of bins occupied by signal.

The reason for this choice is twofold. First, the fit of the
loss curve to a quadratic is much better versus M, than it is
versus M. Second, for a signal set with significantly different
signal powers {§m}, the quantity M is not a good measure of the
number of "occupied" bins. For example, a set of M = 10 signals,
half of which have power level 0 dB and half of which have power
level -20 dB, is obviously better characterized as a set of five
signals, because the remaining five weak signals have very little
beneficial effect on detectability. The effective number M,

takes this variation of all the signal power levels into account.
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The points plotted in figure 29 should be considered in
groups of four. For example, the four points labeled A, B, C, D
were all computed for M = 128 (see point A), and correspond,
respectively, to a total power variation of (M - 1)4 =0, 3, 6, 9
dB, approximately. Thus, by the time the 9 dB total variation is
reached, Mg has decreased from 128 to 83.8. The decrease in Mg
is monotonic as the signal power decrement A(dB) increases.

The selection of a quadratic fit to the loss numbers in
figure 29 is intuitive, and is not made on any particular
analytical basis. However, the closeness of the fit justifies
its use, at least in the range here, where the losses are less
than 1 dB. It will be noticed that the loss of the energy
detector goes to zero as the effective number of occupied bins Mg
tends to N = 1024. This is in keeping with the well-known
optimality of the energy detector for broadband signals.

Additional loss results for the PLPs v = 2, 2.5, 3, « are
given in figures 30, 31, 32, 33, respectively. Again, quadratic
fits to the loss numbers have been utilized and do adequate jobs
in all cases. In fact, there are several reasons why the
quadratic fits are not even better. One is an inability to read
the losses any more accurately from the ROCs given earlier.

Also, although Pf was kept constant at 0.001 in all of the

extraction procedure, it was not possible to maintain Py exactly
at the same value of 0.5; rather, due to a practical limit on the
number of ROCs that could be plotted, the closest representative

value of Py in the neighborhood was used. Finally, abscissa Mg
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is still an ad hoc measure of the effective number of occupied
bins, although it is considerably better than direct use of M.

The progression of the minimum loss location in figures
29 - 33 is from M, = 1024 down towards M, = 1, as power-law v
increases from 1 to ». This is in keeping with earlier results,
which were limited to equal signal powers [1]. Furthermore, the
minimum loss stays below the 0.1 dB range, regardless of the
actual signal powers {§m} or the set size M. In fact, if we look
at any one of the loss curves in figures 29 - 33, we observe that
each complete set of losses follows the same quadratic curve
versus M., regardless of the variation in signal power levels
{§m}. That is, all four cases (A, B, C, D) are well fitted by
the same quadratic, despite the fact that a 9 dB variation is
present in case D.

Therefore, it is expected that the relative performance of a
PLP with given v can be found (approximately) directly from
figures 29 - 33, once the signal set {S_ 1 is prescribed, without
having to generate the entire set of ROCs. These figures also
verify that the PLP can be confidently used for near-optimum
detection of signal sets with widely different power levels; this
attribute was previously known only to hold for equal signal
power levels [1]. The particular case of v = 2.5 in figure 31
again constitutes a minimax solution, in that, regardless of
signal size M and strengths {§m}, the loss of this PLP relative
to OPT-P is never greater than 1.2 dB; actually, v = 2.4 is the
best choice. This remarkable result for this particular PLP

makes it a very robust detector indeed.
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PERFORMANCE FOR A STEPPED SIGNAL POWER DISTRIBUTION

All the previous results have been for a signal power
variation (in decibels), which varies linearly with signal number
m; see (93). In order to ascertain if this uniform spread of
signal powers is coloring the results, a distinctly different
variation of signal powers is considered in this subsection.

A signal set of size M = 64 is considered, where

=2, 5=t =83 =1,

S = e e = S =0.5 ’ = e e =_s- = 0025 . (94)

541 64

Thus, the signal powers are limited to just four different
levels, with a different number of signals within each step. The
ROC for PLP v = 2.5 is presented in figure 34 for N = 1024. The
curves for this case are labeled differently than for all the
previous cases. The central curve labeled 0 corresponds to the
particular set of power values {8y} given in (94). The curve
labeled +1, on the other hand, corresponds to all the signal
powers {S_} having been increased by 1 dB; similarly, the curve
labeled -1 has had all its signal powers lowered by 1 dB relative
to (94). The superposed dashed curve still refers to the OPT-P
processor for signal power set (94).

The loss of the v = 2.5 PLP near the standard operating point
(0.001, 0.5) is approximately 0.08 dB, as seen from figure 34.
This value agrees with that read off the loss plot in figure 31

for v = 2.5 near M, = 41.6; this latter quantity is the effective
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number of signals for signal power set (94). 1In fact, figure 34
bears a very close resemblance to the ROC in figure B-45 for the
example with v = 2.5, M = 64, and Me = 46.5; also, the total
power of the central curve in figure B-45 (labeled §1(dB) = 4) is
65.9, which is very close to the total power for the central
curve in figure 34 (labeled 0), namely, 64. Thus, the earlier
loss curves apply to this very different signal power
distribution also.

In order to see how closely the concept of the effective
number of signals M, describes detectability for a particular set
of unequal signal powers, the "equivalent" ROC for the v = 2.5
PLP using effective values is superposed in figure 35 as the
dashed curves. For the central curve (labeled 0), the equivalent
ROC crosses the true ROC. As the signal powers are increased,
the equivalent ROC becomes progressively more optimistic,
typically overestimating the performance levels; for lower signal
levels, the equivalent ROC is pessimistic. Whether the
discrepancies between ROCs are acceptable in a specific
application depends upon the particular operating point of
interest. It appears that for detection probabilities Py in the
neighborhood of 0.5, the discrepancy is negligible over a wide
range of false alarm probabilities Pej however, a wide range of

comparison examples would need to be run in order to verify this

observation more generally.
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CONCLUSIONS

The optimum processor for detection of random signals with no
structure has been derived and then approximated in order to
arrive at a practical class of processors. The resultant class
of power-law processors, PLPs, has been thoroughly investigated
quantitatively in terms of its false alarm and detection
probabilities, resulting in numerous receiver operating
characteristics for various values of the power-law v.

An upper bound on detectability for any processor operating
in this environment has been ascertained by means of an optimum
banded processor with pairing, OPT-P. This unrealistic
mathematical artifice can be readily simulated, and furnishes a
very tight upper bound on attainable performance. In fact, no
practical processor can ever outperform the OPT-P; it furnishes
the bottom line on attainable performance in this structureless
environment.

Comparison of the PLP class with the OPT-P indicates that
there always exists a PLP that performs within 0.1 dB of the
signal power level of the optimum processor. However, selection
of the best power-law value v would require knowledge of the
effective number of signals, Mg, being detected. Since this
knowledge will not be available in practice, the best minimax
solution is to use power-law v = 2.4, in which case the loss of
the PLP relative to the OPT-P is never greater than 1.2 dB,
regardless of the signal set size M and the signal power

distribution {Sy}-
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Loss curves for the PLP class have been determined for the
five cases of v =1, 2, 2.5, 3, . In order to apply these
results to a given signal power distribution {Su1r the effective

number of signals, M_, must be computed according to (91) and

e
(92). This simple calculation indicates what value of v should

be used for minimum loss, and what additional loss will be
incurred through the use of mismatched values of v.

The additive noise power level has been presumed known
throughout this study; in fact, it was normalized at unit level,
so that the quantity Sa is also the signal-to-noise ratio in a
single bin. An extension to unknown noise levels and the
normalization that must accompany the processor are underway.

Also, the effects of nonwhite noise on the performance of the PLP

are currently under investigation.
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APPENDIX A — EFFECTIVE NUMBER OF SIGNALS
FOR THE POWER-LAW PROCESSOR

When the M occupied signal bins all have common average
signal powers S, the effective number of signals, L is
obviously given by M, = M. However, when the average signal bin
powers {§m} are unequal, a definition of an effective number of
signals is more difficult to determine. We address this problem
here for the case of the v-th power-law processor.

The decision variable of the v-th power-law processor is

N
z=3 _ x . (A-1)
n=1
The general p-th moment of bin output when occupied by a
signal with average power S_, is
xg = T(p+l) (1 + §m)“ for 1 <m <M, (A-2)

where we utilized the exponential density of random variable x .

This leads to the mean of output z in (A-1) in the form

z = T(v+l) , (A-3)

M
Y _(1+5)  +N-M
m=1

and a variance of z as

’ (A-4)

M
ci = [P(2v+1) - rz(v+1)] %;; (1 + §m)2“ +N-M

where we used the independent identically distributed character

of the set of random variables {x,} in (A-1).
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If the actual signal powers {§m} were all replaced by a
common effective signal power Se’ and if the actual number M of
occupied bins were replaced by an effective number M, equations

(A-3) and (A-4) would reduce, respectively, to

Z > T(v+l) [Me (1 + se)” + N - Me] (A-5)
and

2 \Y

o, » |T(2v+1) - rz(v+1)] (Me (1 + se)2 + N - Me] . (A-6)

We now equate the right-hand sides of (A-3) and (A-5), as well as
equating the right-hand sides of (A-4) and (A-6); that is, in the
replacement procedure, we maintain the same first two moments of

random variable z.

In order to solve for the effective quantities Se and Me’ we

define the two auxiliary quantities
M
q =y [+ s - 1] for k =1 and 2 . (A-7)
m=1

Then, for equality of the first two moments, as required above,

we must have
v _ 2V —
M, [(1 + 5" - 1] =q, and M, [(1 +5)%Y - 1] = q, - (A-8)

The solutions of these two equations are immediately given by the

explicit forms

-1, M = —— . (A-9)
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‘ Specification of a particular signal power set {8,1} and M leads
directly to the effective quantities through the use of (A-7) and
(A-9), without the need for any transcendental equation

solutions.

In the special case of § =S for 1 < m < M, then for

arbitrary v, we have
2
q1=y_[(1+§)\’-1], q2=§[(1+_s_)\’—1],

0 -aq =M1+’ (1)’ -1,
2
g, -2q =M1+ -1] , (A-10)

leading to solutions Sg = 5, Mg =M, as expected and required,
regardless of v.

In the alternative special case of v = 1, we have instead

M M M
2
m=1 m=1 m=1

which leads directly to the familiar forms

M M 2
2
. - s
_ m= _ \m=
2
. E S E S
m=1 - m=1 -

Notice that Se Me = % §m’ which is the total signal power, but

only for this special case of v = 1. Results for other values of

v are much more complicated, and can only be found numerically.
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A numerical example for four occupied signal bins, M = 4,

with average signal powers §m = 10, 9, 8, 7, leads to the

following results as a function of the power law v:

v Se Me
0+ 8.50 4.00
.5 8.57 3.97
1.0 8.65 3.93
1.5 8.73 3.87
2.0 8.82 3.79
2.5 8.91 3.69
3.0 8.99 3.58
10.0 9.69 2.09
45 10- 1.03
® 10 1

We see that the effective signal power Se varies from the average
of the set of powers {§m} to the maximum of that set, as v varies
from 0 to ». At the same time, the effective number Me varies

from M down to 1. On the other hand, for v limited to the range
1 to 3, which is our typical range of application and importance,
the effective quantities are relatively constant and fairly well

approximated by the simple results for v = 1, as given by (A-12).
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APPENDIX B — RECEIVER OPERATING CHARACTERISTICS
FOR UNEQUAL SIGNAL POWERS
In figures 1 - 28 of the main text, numerous receiver
operating characteristics (ROCs) were presented for the case of
equal average signal powers in all the bins occupied by signals.
In this appendix, we complement those results with numerous cases
of unequal signal powers, namely figures B-1 through B-84. 1In
particular, as noted already in (93), the m-th signal power

(in decibels) follows the linear law:

S,(dB) = S,(dB) - (m-1) A(dB) for 1 <m < M . (95)

Thus, S, is the largest signal power in the set {Sp,1/ and A(dB)
is the decrement in adjacent signal power levels.

An explanation of figure B-1 is as follows. The solid curves
are for the maximum PLP v = », with M = 2, N = 1024. The
decrement A(dB) is indicated on the figure as being 3 dB for this
example, while the individual curves are labeled according to the
largest signal power S in each set. Thus, the curve labeled 12
has $; = 12 dB and S, = 9 dB. These receiver operating
characteristics were determined analytically. (When Py was found
by simulation, the number of independent trials is indicated on
the figure.)

The superposed dashed curve, coupled by arrows to the curve
labeled 12, is for the OPT-P, which knows and uses the
information M = 2, §; = 12 dB, and S, = 9 dB in an optimum

fashion to maximize the detection probability Py for a given
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false alarm probability Pe. This receiver operating
characteristic for the OPT-P was found by a simulation involving
1E7 independent trials.

The loss of the PLP relative to the OPT-P in figure B-1 is
very small for all P, values indicated. However, by the time M
is increased to 16 in figure B-12, the loss of this PLP at the
standard operating point has increased to about 0.7 dB. The
example in this figure utilizes A = 0.6 dB, which means that the
total signal power variation over the set is (M - 1) A(db) =
15 » 0.6 = 9 dB.

The receiver operating characteristics are grouped in the
order v = », 3, 2.5, 2, 1. Thus, the standard energy detector
results, v = 1, are located at the end of this appendix. The
final example in figure B-84 utilizes A = 0.009 dB and M = 1024,
giving a total variation of 9.216 dB in signal powers.

In all cases, the total search size is N = 1024. The number

of bins occupied by signal varies from M = 2 through M = N =1024.
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APPENDIX C — COVARIANCE COEFFICIENT OF TWO
SEPARATED EXCEEDANCE DISTRIBUTION ESTIMATES
When the same set of random variables, {xn} for 1 £ n £ N, is
used to estimate the exceedance distribution function E( ) at two
different thresholds, v; and v,, the two estimates will be
correlated. Here, we will evaluate the covariance coefficient
between two such estimates. Without loss of generality, we
assume that vy £V,
Let {xn} be a set of N independent identically distributed
random variables with exceedance distribution function E(v); that
is, E(v) = Prob(x, > V). Define the two step functions

1 for x > Vi

9 (x) = { } for k =1 and 2 . (C-1)

0 otherwise

Then, the fraction of the number of times that {xn} exceeds

threshold vy can be written as

=1
9% = N

il ]=

gk(xn) for k=1 and 2 . (C-2)
n=

Random variable qQ) is an estimate of E(vy); in fact, its mean

value is

G = § N G0 = [ dup(u) gy(uw) = [ dupu) = E(v) . (€-3)
v

k

where p(u) is the common probability density function of random

variables {x,1. Thus, q; is an unbiased estimate of E(vy)-
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The mean square value of aQ, is given by

7 _ 1 & 1 2 2
Q= 7 2910w 9105 N—z[N E(v,) + (N°-N) BX(v)], (c-4)
where we broke the double sum into its diagonal versus non-
diagonal terms, and used the independent identically distributed
behavior of the set {xn}, along with (C-1) and (C-3). Combining
this result with (C-3), the variance of estimate q; follows

immediately as
2 1
o3 = var(q;) = 5 E(v;) [1 - E(vl)] , (C-5)

which is a familiar result, decaying as 1/N.
We now consider the crosscorrelation between estimates q; and

4, both using the same data values {x_ }; this is given by

N N
1 1
q; 9, =5 2 . 9(X ) 9,(x ) =52 . 9.(x ) 9 (x,) +
1 =2 N2 m,n=1 1'"m 2'"n N2 —— 1'"n 2'"n
1 & 1 N-1
+ = Z:; E(vy) E(vy) = § E(Vy) + =g~ E(v}) E(Vy) - (C-6)
N° m,n=1
m#n
Here we used v, 2 V,, which gives g,(x,) g,(x,) = gy (x,) = E(v,)-

The covariance of the two estimates q, and q, follows as

QG q - T 3 = § E(vp) * E(v) B(vy) - E(v)) E(V)) [% +1) =

= % B(v,) [1 - E(vp)] - (c-7)

This result holds only for \p 2 Vi that is, E(vz) < E(vl).
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It will be observed that the covariance in (C-7) decays as

1/N. However, the covariance coefficient is given by

_ 8 9 -3 G _ (B(vy) [1 - E(vy)] * o)
o, o, E(v,) (1 - E(v,)]]| '

p

which is independent of N, the number of trials. Thus, the two
different estimates, q, and 4y of the exceedance distribution
function values E(v,) and E(v,) maintain the same degree of
dependence, regardless of the number of trials N employed. For
two thresholds located closely together, this high degree of
covariance means that the two estimates will fluctuate together,
with both tending to be high or both tending to be low for a
particular run of data {x }. This will tend to make a plot of
the sample exceedance distribution function versus threshold v
look smoother than it really should. It will also lead to sample
receiver operating characteristics with a smoother appearance
than justified, and may be misleading regarding stability.

Since the result in (C-8) only holds for v, < v,, then we
have E(v,) £ E(vy) and 1 - E(vy) £ 1 - E(v,), giving covariance
coefficient 0 £ p £ 1 in all cases. Some sample values for p are
given below. For small exceedance probabilities E(vq) and E(v,),

we have approximately p = [E(vz)/E(vl)]%.

E(vy) E(v,) p

0.5 0.4 0.82
0.5 0.1 0.33
0.1 0.01 0.30
0.002 0.001 0.71
0.001 0.0001 0.32
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The characteristic function of random variable q, in (C-2) is

readily calculated in the form
- N
fl(E) = exp(i{ql) = [1 - E; ¢+ Ey exp(iE/N)] ’ (C-9)

where E, = E(v) for k = 1 and 2. Expansion of (C-9) in a power
series in if quickly verifies (C-3) - (C-5). The probability
density function of a, contains an impulse at k/N of area

N N-k _k

[k] (1 - eV *EY for 0 <k < N

The joint characteristic function of random variables q; and

q, in (C-2) can also be evaluated in the closed form

£(&,h) = exp(iiq; + ihgy) = eXP[ﬁ Zf; [iigl(xn) + ingz(xn)]] =
" (C-10)
where
F= [ aupu exp(£5 gy + H gy =
Vi1 V2 : ® . .
= I du p(u) + I du p(u) exp[iﬁ] + j du p(u) exp[l§—§—in] =
- Vi V2
=1-E + (B - Ey) exp[i%] + E, exp[iz = i ] . (C-11)

Expansion of (C-11) in a joint power series in i¥ and ih yields
moments that are consistent with (C-3) - (C-7). The joint
density of q; and q, contains an impulse at u, = k/N, u, = j/N,
of area

N N-k (k _ k-3 o3 . _
[k] (1 - Eq) [j] (E; - E,) E} , for 0 ¢ j <k <N. (C-12)
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